Abstract

Abstract— Partially purified myelin from brains of 17‐day‐old rats was separated into 4 subfractions on a discontinuous sucrose gradient by virtue of heterogeneity in density and particle size. The protein composition of each subfraction was determined by densitometry following separation of proteins on polyacrylamide gels in buffers containing sodium dodecyl sulphate. The major proteins studied included two basic proteins, proteolipid protein, the major high molecular weight protein (W) and a group of high molecular weight proteins.The percentage of high molecular weight proteins decreased sequentially from fraction D to A, that of the W protein remained constant, while relative amounts of the two basic proteins increased. Proteolipid protein concentration also increased as a percentage of the total protein from fraction D to B, but the uppermost fraction. A, had a markedly lower amount than fraction B. At 1 h after intracranial injection of [3H]leucine, the specific radioactivity of the basic and proteolipid proteins decreased from fraction D to B, with proteolipid protein in fraction A again anomalous (specific radioactivity higher than expected). These results are consistent with (but do not prove) a precursor‐product relationship for individual proteins from denser to lighter subfractions, with the exception of myelin subfraction A.Experiments involving time staggered injections of a [14C] and later a [3H] labelled amino acid gave data which demonstrated that the W and basic proteins were added simultaneously (or with delays of much less than 20 min) to all of the subfractions, while proteolipid protein was added sequentially, from lower to upper fractions on the gradient. This double isotope technique also confirmed our previous observations that proteolipid protein shows a lag in entry into myelin compared to basic protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call