Abstract

To increase the throughput of protein identification and characterization in proteome studies, we investigated three methods of performing protein digestion in parallel. The first, which we term "one-step digestion-transfer" (OSDT), is based on protein digestion during the transblotting process. It involves the use of membranes containing immobilized trypsin which are intercalated between the gel and a PVDF collecting membrane. During electrotransfer, some digestion of the transferred proteins occurs, although poorly for basic and/or high molecular weight proteins. The second method is based on "in-gel" digestion of all proteins in parallel and termed "parallel in-gel digestion" (PIGD) to denote this fact. The PIGD led to more efficient digestion of basic and high molecular weight proteins (> 40,000) but suffered from a major drawback: loss of resolution for low molecular weight polypeptides (< 60,000) through diffusion during the digestion process. The third method examined was the combination of PIGD and OSDT procedures. This combination, called "double parallel digestion" (DPD), led to greatly improved digestion of high molecular weight and basic proteins without losses of low molecular weight polypeptides. Peptides liberated during transblotting of proteins through the immobilized trypsin membrane were trapped on a PVDF membrane and identified by mass spectrometry in scanning mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.