Abstract
α-Ketoglutarate (AKG) is a key intermediate metabolite in the tricarboxylic acid cycle of respiration and a precursor for glutamate, playing important roles in regulating plant growth and stress tolerance. The objectives of this study were to examine effects of AKG on heat tolerance characterized by leaf senescence in a cool-season grass species by foliar application and to determine major metabolites and associated metabolic pathways regulated by AKG for its effects on heat tolerance. Perennial ryegrass (Lolium perenne L.) plants were exposed to heat stress (35/30 °C, day/night) or optimal temperature (25/20 °C, day/night, non-stress control) in controlled-environment growth chambers. The solution containing AKG (5 mM) was applied to leaves by spraying 7 d prior to the initiation of heat stress and every 7 d during the heat stress period. Exogenous application of AKG enhanced heat tolerance in perennial ryegrass, as manifested by significant increases in leaf chlorophyll content, photochemical efficiency, and membrane stability, as well as activities of antioxidant enzymes for H2O2 scavenging in AKG-treated plants relative to untreated control plants exposed to heat stress. Metabolic profiling and pathway analysis demonstrated that exogenous AKG application enhanced metabolite accumulation in four major metabolic pathways, including antioxidant metabolism, amino acid metabolism, glycolysis and tricarboxylic acid cycle of respiration, and pyrimidine metabolism, contributing to AKG-improved heat tolerance in perennial ryegrass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.