Abstract

The RNA modification, 5-methylcytosine (m5C), has recently gained prominence as a pivotal post-transcriptional regulator of gene expression, intricately intertwined with various tumorigenic processes. However,the exact mechanisms governing m5C modifications during the onset and progressionof colorectal cancer (CRC) remain unclear. Here, it is determined that the m5C methyltransferase NSUN2 exhibits significantly elevated expression and exerts an oncogenic function in CRC. Mechanistically, NSUN2 and YBX1 are identified as the "writer" and "reader" of ENO1, culminating in the reprogramming of the glucose metabolism and increased production of lactic acid in an m5C-dependent manner. The accumulation of lactic acid derived from CRC cells, in turn, activates the transcription of NSUN2 through histone H3K18 lactylation (H3K18la), and induces the lactylation of NSUN2 at the Lys356 residue (K356), which is crucial for capturing target RNAs. Together,these findings reveal an intriguing positive feedback loop involving the NSUN2/YBX1/m5C-ENO1 signaling axis, thereby bridging the connection between metabolic reprogramming and epigenetic remodeling, which may shed light on the therapeutic potential of combining an NSUN2 inhibitor with immunotherapy for CRC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.