Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) originally emerged in nosocomial settings and has subsequently spread into the community. In turn, community-associated (CA) MRSA lineages are nowadays introduced from the community into hospitals where they can cause hospital-associated (HA) infections. This raises the question of how the CA-MRSA lineages adapt to the hospital environment. Previous studies implicated particular virulence factors in the CA-behaviour of MRSA. However, we hypothesized that physiological changes may also impact staphylococcal epidemiology. With the aim to identify potential metabolic adaptations, we comparatively profiled the cytosolic proteomes of CA- and HA-isolates from the USA300 lineage that was originally identified as CA-MRSA. Interestingly, enzymes for gluconeogenesis, the tricarboxylic acid cycle and biosynthesis of amino acids are up-regulated in the investigated CA-MRSA isolates, while enzymes for glycolysis and the pentose phosphate pathway are up-regulated in the HA-MRSA isolates. Of note, these data apparently match with the clinical presentation of each group. These observations spark interest in central carbon metabolism as a key driver for adaptations that streamline MRSA for propagation in the community or the hospital.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.