Abstract
Mitochondrial deoxynucleoside triphosphates are formed and regulated by a network of anabolic and catabolic enzymes present both in mitochondria and the cytosol. Genetic deficiencies for enzymes of the network cause mitochondrial DNA depletion and disease. We investigate by isotope flow experiments the interrelation between mitochondrial and cytosolic deoxynucleotide pools as well as the contributions of the individual enzymes of the network to their maintenance. To study specifically the synthesis of dGTP used for the synthesis of mitochondrial and nuclear DNA, we labeled hamster CHO cells or human fibroblasts with [(3)H]deoxyguanosine during growth and quiescence and after inhibition with aphidicolin or hydroxyurea. At time intervals we determined the labeling of deoxyguanosine nucleotides and DNA and the turnover of dGTP from its specific radioactivity in the separated mitochondrial and cytosolic pools. In both cycling and quiescent cells, the import of deoxynucleotides formed by cytosolic ribonucleotide reductase accounted for most of the synthesis of mitochondrial dGTP, with minor contributions by cytosolic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. A dynamic isotopic equilibrium arose rapidly from the shuttling of deoxynucleotides between mitochondria and cytosol, incorporation of dGTP into DNA, and degradation of dGMP. Inhibition of DNA synthesis by aphidicolin marginally affected the equilibrium. Inhibition of DNA synthesis by blockage of ribonucleotide reduction with hydroxyurea instead disturbed the equilibrium and led to accumulation of labeled dGTP in the cytosol. The turnover of dGTP decreased, suggesting a close connection between ribonucleotide reduction and pool degradation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have