Abstract

Metabolic flux analysis based on 13C-labeling experiments followed by the measurement of intracellular isotope distribution using both 2D NMR and GC-MS was carried out to investigate the effect of pyruvate kinase (pyk) gene knockout on the metabolism of Escherichia coli in continuous culture. In addition, the activities of 16 enzymes, and the concentrations of 5 intracellular metabolites, were measured as a function of time in batch culture as well as continuous culture. It was found that flux through phosphoenol pyruvate carboxylase and malic enzyme were up-regulated in the pykF- mutant as compared with the wild type, and acetate formation was significantly reduced in the mutant. In addition, flux through the phosphofructose kinase pathway was reduced and that through the oxidative pentose phosphate (PP) pathway increased in the mutant. This was evidenced by the corresponding enzyme activities, and the increase in the concentrations of phosphoenol pyruvate, glucose-6-phosphate and 6-phosphogluconate, etc. It was also found for continuous cultivation that the enzyme activities of the oxidative PP and Entner-Doudoroff pathways increased as the dilution rate increased for the pykF- mutant. To clarify the metabolism quantitatively, it was found to be quite important to integrate the information on intracellular metabolic flux distribution, enzyme activities and intracellular metabolite concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.