Abstract

The effect of sucA or sucC gene knockout on the metabolism in Escherichia coli was investigated for the aerobic cell growth in batch and continuous cultivations based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic flux analysis. In the batch cultivation, the cell growth rate and the glucose uptake rate were lower for sucA mutant as compared with the parent strain, while it was not the case for sucC mutant. A significantly higher amount of acetate was produced, and it was not utilized in s ucC mutant, while a little less acetate was produced in sucA mutant as compared with the parent strain. Unlike the parent strain and sucC mutant, sucA mutant excreted a little amount of l-glutamate. Enzyme activity results show that some of the glycolytic enzymes such as Tpi and Pgk were up-regulated, while Pfk, Fba and Pyk activities were down-regulated for sucA mutant as compared with the parent strain. For sucC mutant, the activities of Pfk, Fba, Tpi, GAPDH, Pgk and Pyk activities were down-regulated. As for the TCA cycle enzymes, the activities of CS and ICDH were down-regulated, while those of Icl, MS, Fum and MDH were up-regulated for sucA mutant. The activities of the oxidative pentose phosphate (PP) pathway enzymes such as G6PDH and 6PGDH and the gluconeogenic pathway enzyme such as Mez were up-regulated in sucA mutant. The Ack activity was down-regulated for sucA mutant, but not for sucC mutant. In continuous cultivation, the gene expression results indicate that the global regulatory genes such as fadR and iclR were slightly down-regulated in sucA mutant, which enhanced the expression of aceA gene and caused the up-regulation of the isocitrate lyase activity in sucA mutant, while fadR and iclR of sucC mutant changed little and no isocitrate lyase activation was observed for sucC mutant. Some other global regulatory genes such as arcA and fnr genes were down-regulated in both mutants, which caused some of the TCA cycle genes to be up-regulated. The effect of the sucA gene knockout on the metabolic flux distributions was investigated based on 1H– 13C NMR spectra and GC–MS signals obtained from 13C-labeling experiments. Flux analysis results indicate that the knockout of sucA gene caused the activation of PP pathway and the glyoxylate shunt. The fluxes through glycolysis and the TCA cycle were down-regulated in the sucA mutant. On the other hand, the fluxes through PP pathway and the anaplerotic reactions of Ppc-Pck and Mez increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call