Abstract

Obesity is a growing epidemic in the United States and worldwide and is associated with insulin resistance and cardiovascular disease, among other comorbidities. Understanding of the pathology that links overnutrition to these disease processes is ongoing. Adipose tissue is a heterogeneous organ comprised of multiple different cell types and it is likely that dysregulated metabolism within these cell populations disrupts both inter- and intracellular interactions and is a key driver of human disease. In recent years, metabolic flux analysis, which offers a precise quantification of metabolic pathway fluxes in biological systems, has emerged as a candidate strategy for uncovering the metabolic changes that stoke these disease processes. In this mini review, we discuss metabolic flux analysis as an experimental tool, with a specific emphasis on mass spectrometry with isotope tracing as this is the technique most frequently used for metabolic flux analysis in adipocytes. Furthermore, we examine existing literature that uses metabolic flux analysis to further our understanding of adipose tissue biology. Our group has a specific interest in understanding the role of white adipose tissue inflammation in the progression of cardiometabolic disease, as we know that in obesity the accumulation of pro-inflammatory adipose tissue macrophages is associated with significant morbidity, so we use this as a paradigm throughout our review for framing the application of these experimental techniques. However, there are many other biological applications to which they can be applied to further understanding of not only adipose tissue biology but also systemic homeostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call