Abstract

Major depressive disorder (MDD) is a psychiatric illness that can jeopardize the normal growth and development of adolescents. Approximately 40% of adolescent patients with MDD exhibit resistance to conventional antidepressants, leading to the development of Treatment-Resistant Depression (TRD). TRD is associated with severe impairments in social functioning and learning ability and an elevated risk of suicide, thereby imposing an additional societal burden. In this study, we conducted plasma metabolomic analysis on 53 adolescents diagnosed with first-episode drug-naïve MDD (FEDN-MDD), 53 adolescents with TRD, and 56 healthy controls (HCs) using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) and reversed-phase liquid chromatography-mass spectrometry (RPLC-MS). We established a diagnostic model by identifying differentially expressed metabolites and applying cluster analysis, metabolic pathway analysis, and multivariate linear support vector machine (SVM) algorithms. Our findings suggest that adolescent TRD shares similarities with FEDN-MDD in five amino acid metabolic pathways and exhibits distinct metabolic characteristics, particularly tyrosine and glycerophospholipid metabolism. Furthermore, through multivariate receiver operating characteristic (ROC) analysis, we optimized the area under the curve (AUC) and achieved the highest predictive accuracy, obtaining an AUC of 0.903 when comparing FEDN-MDD patients with HCs and an AUC of 0.968 when comparing TRD patients with HCs. This study provides new evidence for the identification of adolescent TRD and sheds light on different pathophysiologies by delineating the distinct plasma metabolic profiles of adolescent TRD and FEDN-MDD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call