Abstract

The glucose-mediated carbon catabolite repression (CCR) in Clostridium tyrobutyricum impedes efficient utilization of xylose present in lignocellulosic biomass hydrolysates. In order to relieve the CCR and enhance xylose utilization, three genes (xylT, xylA, and xylB) encoding a xylose proton-symporter, a xylose isomerase and a xylulokinase, respectively, from Clostridium acetobutylicum ATCC 824 were co-overexpressed with aldehyde/alcohol dehydrogenase (adhE2) in C. tyrobutyricum (Δack). Compared to the strain Ct(Δack)-pM2 expressing only adhE2, the mutant Ct(Δack)-pTBA had a higher xylose uptake rate and was able to simultaneously consume glucose and xylose at comparable rates for butanol production. Ct(Δack)-pTBA produced more butanol (12.0 vs. 3.2 g/L) with a higher butanol yield (0.12 vs. 0.07 g/g) and productivity (0.17 vs. 0.07 g/L · h) from both glucose and xylose, while Ct(Δack)-pM2 consumed little xylose in the fermentation. The results confirmed that the CCR in C. tyrobutyricum could be overcome through overexpressing xylT, xylA, and xylB. The mutant was also able to co-utilize glucose and xylose present in soybean hull hydrolysate (SHH) for butanol production, achieving a high butanol titer of 15.7 g/L, butanol yield of 0.24 g/g, and productivity of 0.29 g/L · h. This study demonstrated the potential application of Ct(Δack)-pTBA for industrial biobutanol production from lignocellulosic biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.