Abstract

In recent years, andrographolide sodium bisulfite (ASB) has been reported to cause acute renal failure frequently in clinical practice. We hypothesized that changes in metabolic profile could have occurred after administration of ASB. To investigate the metabolic changes caused by ASB-induced nephrotoxicity, metabonomics method was utilized to depict the urine metabolic characteristics and find the specific urine biomarkers associated with ASB-induced nephrotoxicity. Sprague-Dawley rats were randomly assigned into three experimental groups. They received a single daily injection of vehicle (0.9% sodium chloride solution) or ASB at a dose of 100 or 600 mg kg(-1) day(-1) for 7 days. Twelve-hour urine was collected after the last administration. The routine urinalysis was measured by a urine automatic analyzer while urinary metabolites were evaluated using gas chromatography/mass spectrometry. The acquired data were processed by multivariate principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal PLS-DA. After 7-day administration of ASB, the positive urine samples in protein, occult blood, and ketones were increased, presenting dose dependence. The PCA and PLS-DA models were capable of distinguishing the difference between ASB-treated group and control. Biomarkers such as 1,5-anhydroglucitol, d-erythro-sphingosine, and 2-ketoadipate were identified as the most influential factors in ASB-induced nephrotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call