Abstract

AbstractThe study of winter stress tolerance in perennial legumes needs to consider the complete symbiotic system including both plants and bacteria since these two partners are differentially affected by stress conditions. Here, we compared the regrowth after a freezing stress of four different associations of two alfalfa populations differing in freezing tolerance (A-TF0 and A-TF7) inoculated with two Sinorhizobium (Ensifer) meliloti strains (B399 and NRG34) of contrasted adaptation to cold. To understand the contribution of each partner to a better regrowth performance of an association after freezing, we identified molecular traits having major roles in cold acclimation, freezing tolerance, and those involved in the crosstalk between alfalfa and its symbiotic partner. Regrowth after exposure to a freezing stress was 35% larger in the A-TF7 × NRG34 than in the A-TF0 × B399 association. The metabolomic study of roots, crowns and, more specifically, nodules, revealed profound changes in these organs, switching from a sink to support cold acclimation to a source of reserves enabling regrowth after deacclimation. Marked increases in concentrations of stachyose and raffinose, two sugars of the raffinose-family oligosaccharides (RFO), and in the expression level of a gene of the RFO synthetic pathway were observed in response to cold acclimation supporting the importance of a protective role for RFO in alfalfa. Both cold-adapted partners of the symbiotic association contributed to increases in arginine concentration in nodules in response to cold acclimation and deacclimation underscoring the importance of N storage and remobilization for a successful overwintering in alfalfa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call