Abstract

Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.