Abstract
Myocardial hibernation is an adaptive phenomenon occurring in patients with a history of acute ischemia followed by prolonged hypoperfusion. We investigated, in isolated rabbit heart, whether a brief episode of global ischemia followed by hypoperfusion maintains viability. Four groups were studied; group 1,300 minutes of aerobia; group 2,240 minutes of total ischemia and 60 minutes of reperfusion; group 3, 10 minutes of total ischemia, 230 minutes of hypoperfusion (90% coronary flow reduction), and 60 minutes of reperfusion; and group 4, 240 minutes of hypoperfusion followed by reperfusion. In group 3, viability was maintained. Ten minutes of ischemia caused quiescence, a fall in interstitial pH (from 7.2 +/- 0.01 to 6.1 +/- 0.8), creatine phosphate (CP), and ATP (from 54.5 +/- 5.0 and 25.0 +/- 1.9 to 5.0 +/- 1.1 and 15.3 +/- 2.5 mumol/g dry wt, P < .01). Subsequent hypoperfusion failed to restore contraction and pH but improved CP (from 5.0 +/- 1.1 to 20.1 +/- 3.4, P < .01). Reperfusion restored pH, developed pressure (to 92.3%), and NAD/NADH and caused a washout of lactate and creatine phosphokinase with no alterations of mitochondrial function or oxidative stress. In group 4, hypoperfusion resulted in progressive damage. pH fell to 6.2 +/- 0.7, diastolic pressure increased to 34 +/- 5.6 mm Hg, CP and ATP became depressed, and oxidative stress occurred. Reperfusion partially restored cardiac metabolism and function (47%). A brief episode of total ischemia without intermittent reperfusion maintains viability despite prolonged hypoperfusion. This could be mediated by metabolic adaptation, preconditioning, or both.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have