Abstract
Tobacco grey mold caused by Botrytis cinerea is an important fungal disease worldwide. Boscalid, carbendazim, iprodione, pyrimethanil and propiconazole are representative botryticides for grey mold management. This research investigated the sensitivities of B. cinerea from tobacco to these chemicals using the Biolog FF Microplate. All five chemicals showed inhibitory activity, with average EC50 values of 0.94, 0.05, 0.50, 0.61 and 0.31 μg ml−1, respectively. B. cinerea metabolized 96.8% of tested carbon sources, including 29 effectively and 33 moderately, but the metabolic fingerprints differed under pressures imposed by these botryticides. For boscalid, B. cinerea was unable to metabolize many substrates related to tricarboxylic acid cycle. For carbendazim, carbon sources related to glycolysis were not metabolized. For iprodione, use of most carbon substrates was weakly inhibited, and the metabolic profile was similar to that of the control. For propiconazole, no carbon substrates were metabolized and the physiological and biochemical functions of the pathogen were totally inhibited. These findings provide useful information on metabolic activities of these botryticides, and may lead to future applications of the Biolog FF Microplate for examining metabolic effects of other fungicides on other fungi, as well as providing a metabolic fingerprint of B. cinerea that could be useful for identification.
Highlights
Grey mold management on field crops, including boscalid, carbendazim, iprodione, pyrimethanil and propiconazole
The metabolic abilities of this isolate of B. cinerea were tested by using the Biolog FF MicroPlate which includes 95 different carbon sources
Chemical control remains the main way to reduce the incidence of tobacco grey mould caused by B. cinerea
Summary
Grey mold management on field crops, including boscalid (carboxamide, succinate dehydrogenase inhibitor), carbendazim (benzimidazole), iprodione (dicarboximide), pyrimethanil (anilinopyrimidine) and propiconazole (triazole, sterol biosynthesis inhibitor). Except for carbendazim, they are not registered in China on tobacco for tobacco grey mold management, and no research has been done on these botryticides nor on tobacco isolates of this pathogen in China. There have been a few previous reports of its use for investigating mode of action of fungicides[20,21], and none for these botryticides. The objectives of this current study were to: (i) investigate the in vitro activities of five botryticides against B. cinerea isolated from tobacco; (ii) examine the metabolic profiling of B. cinerea with and without fungicide pressure; and (iii) investigate differences in carbon source utilization of B. cinerea under selective pressures of these five different botryticides. The results from this study provide useful information for tobacco grey mould management and insights into the biochemical effects of these five botryticides
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have