Abstract
The significant increase in antibiotic resistance genes (ARGs) in organic solid wastes (OSWs) has emerged as a major threat to the food chain. Aerobic composting is a widely used technology for OSW management, with the potential to influence the fate of AGRs. However, the variability of the ARG elimination effects reported in different studies has highlighted the uncertainty regarding the effects of composting on ARGs. To identify the potential of composting in reducing ARG and the factors (e.g., composting technologies and physiochemical properties) influence ARG changes, a meta-analysis was conducted with a database including 4,232 observations. The abundances of ARGs and mobile genetic elements (MGEs) can be substantially reduced by 74.3% and 78.8%, respectively, via aerobic composting. During composting, the ARG levels in chicken and swine manure tended to be reduced more significantly (81.7% and 78.0%) compared to those in cattle manure (52.3%) and sewage sludge (32.6%). The reduction rate of sulfonamide resistant genes was only 35.3%, which was much lower than those of other types. MGEs and composting duration (CD) were identified as the most important factors driving ARG changes during composting. These findings provide a comprehensive insight into the effects of composting on ARG reduction, which may help prevent the transmission in food systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.