Abstract
Organic solid wastes (OSWs) are important reservoirs for antibiotic resistance genes (ARGs). Aerobic composting transforms OSWs into fertilizers. In this study, we investigated ARGs dynamics and their driving mechanisms in three OSW composts: pig manure (PM), kitchen waste (KC), and sewage sludge (SG). The dominant ARGs were different in each OSW, namely tetracycline, aminoglycoside, and macrolide resistance (PM); tetracyclines and aminoglycosides (KC); and sulfonamides (SG). ARGs abundance decreased in PM (71%) but increased in KC (5.9-fold) and SG (1.3-fold). Interestingly, the ARGs abundance was generally similar in all final composts, which was contributed to the similar bacterial community in final composts. In particular, sulfonamide and β-lactam resistant genes removed (100%) in PM, while sulfonamide in KC (38-fold) and tetracycline in SG (5-fold) increased the most. Additionally, ARGs abundance rebounded during the maturation period in all treatments. Firmicutes, Proteobacteria, and Actinobacteria were the main ARGs hosts. Several persistent and high-risk genes included tetW, aadA, aadE, tetX, strB, tetA, mefA, intl1, and intl2. The structural equation models showed ARGs removal was mainly affected by physicochemical parameters and bacterial communities in PM, the ARGs enrichment in KC composting correlated with increased mobile genetic elements (MGEs). In general, thermophilic aerobic composting can inhibit the vertical gene transfer (VGT) of pig manure and horizontal gene transfer (HGT) of sludge, but it increases the HGT of kitchen waste, resulting in a dramatic increase of ARGs in KC compost. More attention should be paid to the ARGs risk of kitchen waste composting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.