Abstract

Predicting a landslide susceptibility map (LSM) is essential for risk recognition and disaster prevention. Despite the successful application of data-driven approaches for LSM prediction, most methods generally apply a single global model to predict the LSM for an entire target region. However, in large-scale areas with significant environmental change, various parts of the region hold different landslide-inducing environments, and therefore, should be predicted with respective models. This study first segmented target scenarios into blocks for individual analysis. Then, the critical problem is that in each block with limited samples, conducting training and testing a model is impossible for a satisfactory LSM prediction, especially in dangerous mountainous areas where landslide surveying is costly. To solve the problem, we trained an intermediate representation by the meta-learning paradigm, which is superior for capturing information valuable for few-shot adaption from LSM tasks. We hypothesized that there are more general and vital concepts concerning landslide causes and are sensitive to variations in input features. Thus, we can quickly adapt the models from the intermediate representation for different blocks or even unseen tasks using very few exemplar samples. Experimental results on the two study areas demonstrated the validity of our block-wise analysis in large scenarios and revealed the top few-shot adaption performances of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.