Abstract
A comprehensive landslide inventory and susceptibility maps are prerequisite for developing and implementing landslide mitigation strategies. Landslide susceptibility maps for the landslides prone regions in northern Pakistan are rarely available. The Hunza-Nagar valley in northern Pakistan is known for its frequent and devastating landslides. In this paper, we have developed a landslide inventory map for Hunza-Nagar valley by using the visual interpretation of the SPOT-5 satellite imagery and mapped a total of 172 landslides. The landslide inventory was subsequently divided into modelling and validation data sets. For the development of landslide susceptibility map seven discrete landslide causative factors were correlated with the landslide inventory map using weight of evidence and frequency ratio statistical models. Four different models of conditional independence were used for the selection of landslide causative factors. The produced landslides susceptibility maps were validated by the success rate and area under curves criteria. The prediction power of the models was also validated with the prediction rate curve. The validation results shows that the success rate curves of the weight of evidence and the frequency models are 82% and 79%, respectively. The prediction accuracy results obtained from this study are 84% for weight of evidence model and 80% for the frequency ratio model. Finally, the landslide susceptibility index maps were classified into five different varying susceptibility zones. The validation and prediction result indicates that the weight of evidence and frequency ratio model are reliable to produce an accurate landslide susceptibility map, which may be helpful for landslides management strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.