Abstract
In robot-assisted manufacturing or assembly, following a predefined path became a critical aspect. In general, inverse kinematics offers the solution to control the movement of manipulator while following the trajectory. The main problem with the inverse kinematics approach is that inverse kinematics are computationally complex. For a redundant manipulator, this complexity is further increased. Instead of employing inverse kinematics, the complexity can be reduced by using a heuristic algorithm. Therefore, a heuristic-based approach can be used to solve the inverse kinematics of the robot manipulator end effector, guaranteeing that the desired paths are accurately followed. This paper compares the performance of four such heuristic-based approaches to solving the inverse kinematics problem. They are Bat Algorithm (BAT), Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA). The performance of these algorithms is evaluated based on their ability to accurately follow a predefined trajectory. Extensive simulations show that BAT and GSA outperform PSO and WOA in all aspects considered in this work related to inverse kinematic problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.