Abstract

Abstract Grain-boundary (GB) properties in a polycrystalline system are generally anisotropic; in particular, both the GB energy and the mobility depend on the GB misorientation. Here the effect of anisotropic GB properties on two- dimensional grain growth is investigated by computer simulation. A stochastic velocity Monte Carlo algorithm based on a variational formulation for the dissipated power is implemented. The simulations show that grain growth leads to an increase in the fraction of small-angle GBs during the growth process. The average grain area is found to grow with a smaller exponent than in a system with isotropic GB properties. An extended von Neumann-Mullins relation based on averaged GB properties is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call