Abstract

A cellular automata model was used to study the diffusion characteristics in the corrosion film at a mesoscopic scale. The model focused on a metal/film/electrolyte system, including a series of local evolution rules. The effect of diffusion rate on the film growth and metal corrosion was investigated. The result showed that the growth rate of the film followed a power law with the diffusion steps, and the corrosion rate had the same law as that of the film growth in the model with the feedback effect. There existed a diffusing plane in the film, where the concentration of the diffusing species did not depend on time. The diffusion steps were found to have a great influence on the position and species concentration of the diffusing plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.