Abstract
Cellular Automata (CA) models, initially studied by John von Neumann, have been developed by numerous researchers and applied in both academic and scientific fields. Thanks to their local and independent rules, simulations of complex systems can be easily implemented based on CA modelling on parallel machines. However, due to the heterogeneity of the components - from the hardware to the software perspective-the various possible scenarios running parallelism in today's architectures can pose a challenge in such implementations, making it difficult to exploit. This paper presents OpenCAL++, a transparent and efficient object-oriented platform for the parallel execution of cellular automata models. The architecture of OpenCAL++ ensures the modeller a fully transparent parallel execution and a strong “separation of concerns” between the execution parallelism issues and the model implementation. The code implementing the Cellular Automata model remains the same whether the execution performs in a shared-, distributed-memory or a GPGPU context, irrespective of the optimizations adopted. To this aim, the object-oriented paradigm has been intensely exploited. As well as the OpenCAL++ architecture, we present the description of a simple Cellular Automata model implementation for illustrative purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.