Abstract

As the self-lubricating layer of self-lubricating spherical plain bearings, fabric liner shows obvious heterogeneous anisotropic characteristics, so it is a technical difficulty to predict its wear properties. In this paper, the continuous wear of self-lubricating fabric liner was simulated based on the mesoscopic scale wear model. The macroscopic wear properties of the fabric liner were characterized by establishing a representative volume element, and subsequently imposing periodic boundary restrictions on periodic surfaces. In order to avoid excessive mesh distortion, voxel grids meshing method was used, and then continuous wear of the heterogeneous material was realized by adjusting node coordinates and combining nodes. Detailed comparison between simulation prediction results and wear test data of fabric liner was made. The good correlation of the results confirmed that the mesoscopic scale wear model could be used in accurately predict the tribological performance of fabric composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.