Abstract

ABSTRACTIn this work the microstructures of star acrylated poly(ethylene glycol-co-lactide) (SPELA) with different LA:EG ratios in the aqueous solution have been simulated via Dissipative Particle Dynamics (DPD) approach at the mesoscale. The system components were coarse-grained into different beads (set of atoms) which moved according to the Newton’s equations of motion integrated via a modified Velocity-Verlet algorithm. The force acting on each bead, in a specific cutoff distance (rc), was divided into a conservative force (FC), random force (FR), dissipative force (FD), bond force (FS) and bond angle force (FE). The repulsion parameters of the conservative force (αij) were calculated from the solubility parameter of the beads, each of which were extracted from an atomistic molecular dynamics simulation (MD). Simulations showed the formation of micelles with lactide and acrylate beads occupied the core and hydrophilic ethylene oxide segments extending through the water to form the corona. The micelles showed an increasing trend in size and decreasing trend in number density with increase in LA:EG ratio. Results showed that the acrylate density decreased from the center of the micelles to the core surface although the overall amount of acrylates increased due to the increase in volume. Furthermore, the running integration number of acrylate-water beads showed decreasing accessibility of acrylates to water with increasing PLA volume fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.