Abstract
The role of viscous forces coupled with Brownian forces in momentum-conserving computer simulations is studied here in the context of their contribution to the total average pressure of a simple fluid as derived from the virial theorem, in comparison with the contribution of the conservative force to the total pressure. The specific mesoscopic model used is the one known as dissipative particle dynamics, although our conclusions apply to similar models that obey the fluctuation–dissipation theorem for short range interactions and have velocity-dependent viscous forces. We find that the average contribution of the random and dissipative forces to the pressure is negligible for long simulations, provided these forces are appropriately coupled and when the finite time step used in the integration of the equation of motion is not too small. Finally, we study the properties of the fluid when the random force is made equal to zero and find that the system freezes as a result of the competition of the dissipative and conservative forces.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.