Abstract

Abstract A new two-moment bulk microphysics scheme is implemented into the polar version of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to simulate arctic mixed-phase boundary layer stratiform clouds observed during Surface Heat Budget of the Arctic (SHEBA) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Arctic Cloud Experiment (ACE). The microphysics scheme predicts the number concentrations and mixing ratios of four hydrometeor species (cloud droplets, small ice, rain, snow) and includes detailed treatments of droplet activation and ice nucleation from a prescribed distribution of aerosol obtained from observations. The model is able to reproduce many features of the observed mixed-phase cloud, including a near-adiabatic liquid water content profile located near the top of a well-mixed boundary layer, droplet number concentrations of about 200–250 cm−3 that were distributed fairly uniformly through the depth of the cloud, and continuous light snow falling from the cloud base to the surface. The impacts of droplet and ice nucleation, radiative transfer, turbulence, large-scale dynamics, and vertical resolution on the simulated mixed-phase stratiform cloud are examined. The cloud layer is largely self-maintained through strong cloud-top radiative cooling that exceeds 40 K day−1. It persists through extended periods of downward large-scale motion that tend to thin the layer and reduce water contents. Droplet activation rates are highest near cloud base, associated with subgrid vertical motion that is diagnosed from the predicted turbulence kinetic energy. A sensitivity test neglecting subgrid vertical velocity produces only weak activation and small droplet number concentrations (<90 cm−3). These results highlight the importance of parameterizing the impact of subgrid vertical velocity to generate local supersaturation for aerosol-droplet closure. The primary ice nucleation mode in the simulated mixed-phase cloud is contact freezing of droplets. Sensitivity tests indicate that the assumed number and size of contact nuclei can have a large impact on the evolution and characteristics of mixed-phase cloud, especially the partitioning of condensate between droplets and ice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.