Abstract

Abstract In this study four mesoscale forecasting systems were used to investigate the four-dimensional structure of atmospheric refractivity and ducting layers that occur within evolving synoptic conditions over the eastern seaboard of the United States. The aim of this study was to identify the most important components of forecasting systems that contribute to refractive structures simulated in a littoral environment. Over a 7-day period in April–May of 2000 near Wallops Island, Virginia, meteorological parameters at the ocean surface and within the marine atmospheric boundary layer (MABL) were measured to characterize the spatiotemporal variability contributing to ducting. By using traditional statistical metrics to gauge performance, the models were found to generally overpredict MABL moisture, resulting in fewer and weaker ducts than were diagnosed from vertical profile observations. Mesoscale features in ducting were linked to highly resolved sea surface temperature forcing and associated changes in surface stability and to local variations in internal boundary layers that developed during periods of offshore flow. Sensitivity tests that permit greater mesoscale detail to develop on the model grids revealed that initialization of the simulations and the resolution of sea surface temperature analyses were critical factors for accurate predictions of coastal refractivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call