Abstract

AbstractThe eddy-covariance technique tends to underestimate turbulent heat fluxes, which results in nonclosure of the surface energy balance. This study shows experimental evidence that mesoscale turbulent organized structures, which are inherently not captured by the standard eddy-covariance technique, can affect near-surface turbulent exchange. By using a combined setup of three Doppler wind lidars above a cropland-dominated area in Germany, low-frequency turbulent structures were detected in the surface layer down to a few meters above ground. In addition, data from two micrometeorological stations in the study area were analyzed with respect to energy balance closure. In accordance with several previous studies, the data confirm a strong friction velocity dependence of the energy balance residual. At both stations, the energy balance residual was found to be positively correlated with the vertical moisture gradient in the lower atmospheric boundary layer, but at only one station was it correlated with the temperature gradient. This result indicates that mesoscale transport probably contributes more to the latent heat flux than to the sensible heat flux, but this conclusion depends largely on the measurement site. Moreover, flow distortion due to tower mountings and measurement devices affects the energy balance closure considerably for certain wind directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.