Abstract

Summary Mesoporous TiO2 nanomaterials have been investigated for decades; however, most endeavors have been focused on the exploration of their potentials in various applications, and the fundamental research for preparing mesoporous TiO2 in a highly controllable manner remains unfruitful. Herein, we report a facile pressure-driven oriented assembly approach to synthesize an unprecedented type of dehiscent mesoporous TiO2 microspheres with radial mesopore channels and oriented rutile crystallites. By varying the concentrated HCl amount, we have been able to produce TiO2 microspheres with well-controlled rutile/anatase phase ratio. By further manipulating the reaction conditions including solvent evaporation time and hydrothermal temperature, the oriented growth with tunable crevices can also be well manipulated. Such dehiscent mesoporous TiO2 microspheres have exhibited great permeability and excellent photocatalytic properties for H2 generation. We believe that the high structural complexity and predictability of this method offers great opportunities in enhancing the performance of TiO2-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call