Abstract

Mesoporous TiO2 microspheres were successfully synthesized by a facile hydrothermal process and the obtained product was sintered at 450 °C. The sintered TiO2 powder was characterised by powder X-ray diffraction pattern and the result shows pure anatase phase with good crystalline nature. The morphological image of field emission scanning electron microscopy and high resolution transmission electron microscopy shows spherical shape and size of the particles is around 100 to 300 nm. The Brunauer–Emmett–Teller surface area of synthesized TiO2 material was 56.32 m2 g−1 and average pore width of synthesized materials was 7.1 and 9.3 nm. Bimodal pore structure of TiO2 microspheres has been very effective for electrolyte diffusion into photoanode in dye sensitized solar cells. The synthesized anatase TiO2 microsphere based dye sensitized solar cells have high surface area with light scattering effect to enhance the photocurrent and conversion efficiency than the commercial P25 photoanode material. The power conversion efficiency of synthesized mesoporous TiO2 microspheres and commercial P25 material is 4.2 and 2.7 % respectively. Therefore bimodal mesoporous anatase TiO2 microsphere appears to be a promising and potential candidate for dye sensitized solar cells (DSSC) application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call