Abstract

Designing a heterojunction semiconductor is an efficient strategy to extend the light response of a photocatalyst to the visible range and thus improve photocatalytic activity. Starting with mesoporous anatase TiO2 microspheres, mesoporous TiO2/g-C3N4 microspheres were prepared via a facile nanocoating procedure, with the porous TiO2 as the active supporting scaffold and g-C3N4 (3 wt %) as the visible light sensitizer. Heterojunctions formed at the TiO2/g-C3N4 interfaces separated photogenerated charges. The TiO2 surface (64.4 m2 g–1) was mostly covered by a photoactive g-C3N4 layer, while the interconnected porous network featured a large pore volume (0.30 cm3 g–1) for mass diffusion. The g-C3N4 precursor, cyanamide, a nitrogen-rich molecule, also acted as a nitrogen source to form TiO2–xNx. Substitution of N in the TiO2 lattice triggered a visible light response due to an additional N level above the TiO2 valence band that resulted in band gap narrowing to 1.5 eV. Compared with mesoporous g-C3N4, the co...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.