Abstract
AbstractWell‐defined and monodispersed rhodium nanoparticles as small as approximately 2 nm were encapsulated in situ and stabilized in a mesoporous silica nanoparticle (MSN) framework during the synthesis of the mesoporous material. Although both the activity and selectivity of MSN‐encapsulated rhodium nanoparticles in CO hydrogenation could be improved by the addition of manganese oxide as expected, the carbon selectivity for C2 oxygenates (including ethanol and acetaldehyde) was unprecedentedly high at 74.5 % with a very small amount of methanol produced if rhodium nanoparticles were modified by manganese oxide with very close interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.