Abstract

The non-specific leakage of drugs from nanocarriers seriously weakened the safety and efficacy of chemotherapy, and it was very critical of constructing tumor microenvironment (TME)-responsive delivery nanocarriers, achieving the modulation release of drugs. Herein, using manganese dioxide (MnO2) as gatekeeper, an intelligent nanoplatform based on mesoporous polydopamine (MPDA) was developed to deliver doxorubicin (DOX), by which the DOX release was precisely controlled, and simultaneously the photothermal therapy (PTT) and chemodynamic therapy (CDT) were realized. In normal physiological environment, the stable MnO2 shell effectively avoided the leakage of DOX. However, in TME, the overexpressed glutathione (GSH) degraded MnO2 shell, which caused the DOX release. Moreover, the photothermal effect of MPDA and the Fenton-like reaction of the generated Mn2+ further accelerated the cell death. Thus, the developed MPDA-DOX@MnO2 nanoplatform can intelligently modulate the release of DOX, and the combined CDT/PTT/chemotherapy possessed high-safety and high-efficacy against tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.