Abstract

In this work, we presented a modified sol-gel method to synthesize the nanocrystalline composite composed of Li4Ti5O12 (LTO) and rutile-TiO2, and utilized it as an efficient anode material for lithium-ion battery application. The detailed structural studies revealed that the spherical shaped rutile nanoparticles of ∼10–20 nm were homogeneously distributed on the surface of LTO and therefore the mesoporous/microporous nature of the two-phase Li4Ti5O12-TiO2 (LTO-T) was exhibited. According to a series of galvanostatic charge/discharge tests, the LTO-T electrode with the mesoporous/microporous microstructure demonstrated the improved electrochemical performance, especially at a high C rate. Interestingly, the LTO-T electrode achieved an excellent specific capacity of 175 mAh g−1 and 155 mAh g−1 even after 50 charge/discharge cycles at 1C and 5C, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call