Abstract

The mesoporous electrode material offers a high surface area, excellent porous texture, and optimal pore-size distribution, facilitating increased active sites for ion accretion and enhanced ionic diffusion rates. NiMoO4, TiS2, and their composites such as NT-1, NT-2, NT-3, and NT-4 composites have been prepared by hydrothermal approach to enhance the capacitance of supercapacitor electrodes. Different methodologies have been employed to analyze the optical, morphological and structural characteristics of the synthesized materials. X-ray diffraction was utilized to assess the crystalline nature of both the pristine materials and composites. Scanning electron microscopy examination confirmed the formation of mesoporous and irregular nanoparticles with sizes ranging from 50 to 100 nm. Fourier-transform infrared spectroscopy was employed to examine the stretching vibrations of the prepared samples. Through photoluminescence (PL) analysis, the energy band gap of the NT-1 composite was decisive to be 2.78 eV. The NT-1 composite exhibits an impressive specific capacitance of 1257.14 Fg−1 at 1 Ag−1, attributed to its huge surface area, efficient charge transfer, and synergistic effect while demonstrating remarkable stability after 5000 cycles with 92% capacitance retention. Therefore, NT-1 binary metal sulfide composite unleashes high-performance supercapacitors with remarkable specific capacitance and cyclic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call