Abstract

The use of biomass porous carbon materials for energy storage has attracted tremendous attention in current research and has great applications in supercapacitors, lithium batteries, and fuel cells. In this work, sisal-derived activated carbon fibers (SC) are obtained through a simple and convenient method using sisal, a natural biomass material, as a precursor. SC-750 has a high specific surface area (SBET: 2289 m2 g–1) and an optimized pore size distribution with a total pore volume of 1.23 cm3 g–1. For supercapacitors, the obtained SC-750 exhibits excellent specific capacitance and cycle stability. The specific capacitance value is 415 F g–1 at 0.5 A g–1, and SC-750 shows a 93% capacitance retention after a long cycle (10,000 cycles) at 10 A g–1. In addition, the SC-750-based symmetric supercapacitor exhibits a high energy density of 11.9 Wh kg–1 in 6 M KOH electrolyte. Therefore, the results of this work demonstrate that sisal-derived activated carbon fiber has a great application value in supercapaci...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.