Abstract

The mesoporous Li2FeSiO4@ordered mesoporous carbon (CMK-3) has been firstly synthesized by a sol–gel method. The structural properties of the samples are characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption. The composite is then evaluated as a cathode material for lithium ion batteries. It exhibits greatly improved electrochemical performance compared with bulk Li2FeSiO4 and shows an excellent rate capability (160, 148, 129, 110, 90, 66 and 50mAhg−1 at 0.1, 0.2, 0.5, 1, 2, 5 and 10C, respectively) with significantly enhanced cycling performance. The greatly enhanced lithium storage properties of the Li2FeSiO4@CMK-3 composites may be attributed to the interpenetrating conductive carbon network, ordered mesoporous structure, and small uniform Li2FeSiO4 nanocrystallites that increase the ionic and electronic conduction throughout the electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.