Abstract

We demonstrated the effect of ZnO (different wt%)-coated LiMnPO4-based cathode materials for electrochemical lithium ion batteries. ZnO-coated LiMnPO4 cathode materials were prepared by the sol-gel method. X-ray diffraction (XRD) analysis indicates that there is no change in structure caused by ZnO coating, and field emission scanning electron microscopy (FESEM) images depict the closely packed particles. Galvanostatic charge-discharge tests show the ZnO-coated LiMnPO4 sample has an enhanced electrochemical performance as compared to pristine LiMnPO4. The 2 wt% of ZnO-based LiMnPO4 exhibited maximum discharge capacity of 102.2 mAh g−1 than pristine LiMnPO4 (86.2 mAh g−1) and 1 wt% of ZnO-based LiMnPO4 (96.3 mAh g−1). The maximum cyclic stability of 96.3 % was observed in 2 wt% of ZnO-based LiMnPO4 up to 100 cycles. This work exhibited a promising way to develop a surface-modified LiMnPO4 using ZnO for enhanced electrochemical performance in device application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call