Abstract
Nitrogen oxides (NOx) and chlorinated volatile organic compounds (CVOCs) are major environmental pollutants, posing severe risks to human health and ecosystems. Traditional single-component catalysts often fail to remove both pollutants efficiently, making synergistic catalytic technologies a critical research focus. In this study, a mesoporous HPW-CS-Ce-Ti oxide catalyst, modified with H3PW12O40 (HPW) and chitosan (CS), was synthesized via self-assembly. The optimized 10HPW-CS-Ce0.3-Ti catalyst achieved nearly 100% NO conversion at 167–288 °C and a T90 of 291 °C for CVOC conversion, demonstrating superior dual-pollutant removal. HPW and chitosan facilitated mesoporous structure formation, enhancing mass transfer and active site availability. HPW doping also modulated the Ce4+/Ce3+ ratio, boosting redox capacity and surface-active oxygen species, while increasing acidity to promote NH3 and CVOC adsorption. This study presents a novel catalyst and synthesis method with significant potential for environmental protection and human health.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have