Abstract

Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call