Abstract

Nucleon-nucleon interactions obtained from several models for the field theoretic scattering amplitude are studied. The interaction includes contributions from one-pion and one-omega exchange and from two-pion exchange as calculated in a dispersion theory framework. The resulting interaction is regularized by a cut-off factor obtained by the eikonal approximation to multiple vector meson exchange processes. The Blankenbecler-Sugar equation is solved with the interaction and nucleon-nucleon scattering phase parameters are computed. For the best model good agreement with phenomenological phase parameters is achieved for physically reasonable values of the meson-nucleon coupling constants and the spectral functions needed for the evaluation of the two-pion exchange effects. The deuteron wave function is computed as are the deuteron charge and quadrupole form factors. The interaction is shown to have significantly weaker short-range repulsion than commonly found in local phenomenological potentials and in one-boson exchange models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call