Abstract
Most of the discovered high-temperature geothermal energy systems are often related with granite that is characterized by natural faults, fractures and cracks of different size. However, the porosity and permeability of the granite matrix is very low, greatly limiting the efficiency of heat extraction in granitic rock. Chemical stimulation, which is regarded as one of the most important means of reservoir stimulation, has consequently received more and more attention. In this paper, a Triassic granite obtained from the eastern region of Liaoning Province in China was reacted with three different concentration of mud acid solution (8% HCl + 1% HF, 10% HCl + 2% HF, 12% HCl + 3% HF) and the resulting microstructure changes studied by scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR). The experimental results show that the number of micropores in the granite increases after chemical corrosion by mud acid solution. A higher mud acid solution concentration results in a much higher pore volume. Triaxial compression tests on the granite before and after chemical corrosion were carried out to study the effect of acidification on the mechanical characteristics of granite, showing that the peak stress and elastic modulus of granite decreases 25.7% and 16.5%, respectively, after exposure to mud acid solution (12% HCl + 3% HF) corrosion for three weeks at room temperature. The particle flow program PFC2D based on discrete element method was used to investigate the mechanical response before and after the chemical corrosion. Considering that the granite is rich in microcracks, the study is simplified by considering them all grouped into one main closed fracture. The influences of main crack inclination angle, crack length, friction coefficient and confining pressure on the mechanical response were investigated. Under the triaxial compression loading state, wing cracks appear at the initial crack tip, then secondary cracks begin to appear. The sensitivity analysis shows that three characteristic strengths (crack initiation strength, damage strength and peak strength) are strongly correlated with crack length, crack inclination angle, crack surface friction coefficient and confining pressure. These three characteristic strengths decrease 60%, 59% and 53%, respectively, compared with their initial values with the increase of main crack length from 6 mm to 22 mm, while they present positive correlation with the fracture friction coefficient from 0 to 1.0 and confining pressure from 10 to 50 MPa. There is a critical inclination angle of the main crack (i.e., 45°), meaning that these three characteristic strengths of granite decrease with inclination angles smaller than 45°, while they increase with an inclination angle larger than 45°. After the corrosion effect of mud acid solution on granite, the pore structure was changed and mechanical properties was damaged, which further affect the failure mode and failure process of granite samples affected by mud acid solutions. This paper provides a theoretical reference for evaluating the effect of chemical stimulation technology on the mechanical characteristics of granite, serving for the continuous hydraulic stimulation design after the chemical stimulation.
Highlights
In order to mitigate the climate change effects effected by greenhouse gases, more and more countries have set carbon neutrality goals
In PFC2D, both the propagation of cracks and acoustic emission can be recorded by programming
Based on the microstructure analysis performed by the T2 spectrum and scanning electron microscopy methods, triaxial compression tests of Triassic granite from Eastern
Summary
In order to mitigate the climate change effects effected by greenhouse gases, more and more countries have set carbon neutrality goals. China proposes to strive for a carbon dioxide peak by 2030 and achieve the goal of “carbon neutrality” by 2060. To achieve this goal, it is necessary to change the structure of the energy supply. Have carried out nearly 30 experimental and demonstrative Enhanced Geothermal System (EGS) engineering projects for power generation from high-temperature rocks at deep depths [4]. Many of these EGS projects extract the heat from granite. The exploration and exploitation of high-temperature rock masses in China started late and the first demonstration EGS project is located in the Gonghe Basin in northwestern China, where granite with a temperature of 236 ◦C was found at a depth of 3750 m [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.