Abstract

This paper proposes a scheme to develop 2D mesoscale propellant models from X-ray computed tomography (XCT) images, including digital image processing (DIP)-based models and molecular dynamics (MD)-based models. In the MD-based approach, parametric models can be constructed by presuming that the particles are discs that satisfy the size distribution and volume fraction derived from XCT images of propellant. Based on the advantages of the virtual element method (VEM) for simulating the deformation of composite materials, this study obtains statistical information from XCT images to generate mesostructural models and compare their mechanical behaviors. Under the assumption of small deformation, the mesoscopic behaviors predicted by both mesostructural models are in good agreement, indicating that simpler MD-based models are adequate to characterize the overall viscoelastic properties of propellant. The impacts of propellant mesostructure parameters were addressed by using MD-based models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call