Abstract
This paper presents a meso-scale modelling framework to investigate the fracture process in concrete subjected to uniaxial and biaxial compression accounting for its mesostructural characteristics. 3D mesostructure of concrete consisting of coarse aggregates, mortar and interfacial transition zone between them was developed using an in-house code based on the Voronoi tessellation and splining method, which enables to generate the realistic-look aggregates with controllable structural features such as content, location, size and shape. Based on the generated 3D mesostructure, the concrete damage plasticity approach was employed to simulate the compressive fracture behaviour of concrete in terms of crack morphology and stress-strain response against the shape parameters of aggregate. Results indicate that the shape of aggregate has a negligible effect on compressive strength of concrete, which is highly associated with the random location and size distribution of aggregate. The aggregate irregularity has a significant influence on crack initiation and growth of concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.