Abstract

The main objective in this paper is to propose an efficient numerical formulation for solving the time-fractional distributed-order advection–diffusion equation. First, the distributed-order term has been approximated by the Gauss quadrature rule. In the next, a finite difference approach is applied to approximate the temporal variable with convergence order $$\mathcal{O}(\tau ^{2-\alpha })$$ as $$0<\alpha <1$$ . Finally, to discrete the spacial dimension, an upwind local radial basis function-finite difference idea has been employed. In the numerical investigation, the effect of the advection coefficient has been studied in terms of accuracy and stability of the proposed difference scheme. At the end, two examples are studied to approve the impact and ability of the numerical procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.