Abstract

The main aim of the current paper is to propose an upwind local radial basis functions-finite difference (RBF-FD) method for solving compressible Euler equation. The mathematical formulation of chemically reacting, inviscid, unsteady flows with species conservation equations and finite-rate chemistry is studied. The presented technique is based on the developed idea in [58]. For checking the ability of the new procedure, the compressible Euler equation is solved. This equation has been classified in category of system of advection-diffusion equations. The solutions of advection equations have some shock, thus, special numerical methods should be applied for example discontinuous Galerkin and finite volume methods. Moreover, two problems are given that show the acceptable accuracy and efficiency of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.