Abstract

A meshless element-free Galerkin method (EFGM) which is applicable to arbitrary shapes but requires only nodal data is applied to two-dimensional steady-state ground-coupled heat transfer problems. The soil layer around underground constructions is modeled as a homogeneous medium and as a layered soil with two layers. Variational method is utilized to obtain the discrete equations. Moving least squares (MLS) approximants are used to construct the shape functions. Lagrange multiplier technique is employed to enforce the essential boundary conditions. The calculation precision of EFGM is validated by comparing EFGM results with those obtained by finite element method (FEM). EFGM reduce considerably the preparation of the model. EFGM is very appropriate for the ground-coupled heat transfer problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.