Abstract

The utilization of efficacious hemostatic agents in surgical procedures has the potential to enhance operational efficacy, expedite patient recovery, and diminish the need for blood transfusions. However, in cases of excessive bleeding, few commercial hemostatic agents can maintain contact with the bleeding site and perform hemostatic functions effectively. In the present work, we propose a mesh-shaped absorbable lyophilized hemostatic hydrogel patch with excellent biodegradability, wet tissue adhesion ability, strong structural properties, and good blood coagulation activity by integrating the beneficial properties of two marine organism-derived bioengineered protein biomaterials, sea anemone silk-like protein (aneroin) and mussel adhesive protein (MAP). The hemostatic efficacy of the developed hydrogel patch was thoroughly evaluated using in vitro and in vivo experiments. The mesh-shaped hemostatic hydrogel patch exhibited the ability to absorb plasma upon contact with blood, adhere to surfaces, and facilitate aggregation of blood components, hence enhancing the process of blood coagulation. Using animal liver damage models, we confirmed that the hemostatic hydrogel patch could significantly enhance hemostatic capabilities by reducing clotting time and blood loss while exhibiting minimal inflammation and toxicity when remaining within the body. Thus, our proposed absorbable hemostatic hydrogel patch demonstrated great potential for use as a novel adhesive hemostatic agent for application in visceral surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.